
The effect of anharmonicity on the spectral shape of linear chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 8497

(http://iopscience.iop.org/0953-8984/8/44/005)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 04:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 8497–8511. Printed in the UK

The effect of anharmonicity on the spectral shape of linear
chains

Evgenii S Freidkin†, George K Horton† and E Roger Cowley‡
† Department of Physics and Astronomy, Rutgers, The State University, Piscataway, NJ 08855-
0849, USA
‡ Physics Department, Camden College, Rutgers, The State University, Camden, NJ 08102-1205,
USA

Received 26 February 1996, in final form 14 June 1996

Abstract. The spectral shape of a non-linear Lennard-Jones chain is studied using various
orders of perturbation theory. We include self-consistent phonon and bubble diagram effects
and emphasize the importance of the sum rule. The double-peaked structure that we find in
our spectral distributions, which survives the higher-order corrections included in this paper, is
discussed. We make a comparison of our results with those obtained using molecular dynamics
and the Zwanzig–Mori continued-fraction (moments) method.

1. Introduction

The thermodynamics of quantum crystals is now in a reasonably satisfactory state.
Milestones that have contributed to this advance were Born’s [1] discovery of self-
consistent phonon theory and Feynman’s path [2] integral formulation of quantum-statistical
mechanics. This was followed by the development of effective potential theory [3] and
quantum Monte Carlo theory [4] which provided complementary approaches to studying
static properties of crystals. Finally, we note the success ofab initio lattice dynamical
calculations [5].

The same cannot be said of the dynamical properties of quantum crystals. Unfortunately,
we do not yet have a quantum molecular dynamics formalism although the effective potential
theory seems to offer a promising approach to this important problem. For the classical limit,
molecular dynamics provides useful results for both equilibrium and transport properties
of crystals, subject to the inherent limitations imposed by computer capabilities. In an
important series of papers [6], results based on a moments expansion and its connection to
the continued-fraction representation of the spectral shape, as given by the Zwanzig–Mori
theory and supplemented by molecular dynamics results, have been published in order to
make progress on this difficult problem. Since these moments are equilibrium averages of
quantum variables, the lowest few moments can readily be evaluated, although great care
must be taken to obtain them as accurately as possible. We shall refer to this approach as
the moments method. It is most reliable at higher temperatures.

An alternative method for obtaining spectral shapes is based on perturbation theory
including anharmonic effects systematically, which is most reliable at low temperatures.
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Figure 1. Diagrams included in the anharmonic self-energy. In the perturbation theory and
bubble approximations, the full circles are unrenormalized anharmonic vertices. In the self-
consistent and self-consistent-plus-bubble approximations, they are smeared.

The one is most valid where the other is least valid. It is, therefore, reasonable to hope that
the two methods might complement each other and that there will be reasonable overlap.
We have recently presented numerical results for spectral shapes in the lowest order of
perturbation theory, which includes cubic and quartic contributions from the expansion of
the interatomic potential shown in figures 1(a) and 1(b) [7]. In this paper we include higher-
order effects in the expansion of the interatomic potential. This is most effectively done
using self-consistent phonon theory and by including bubble diagrams, shown in figure 1(c),
which arise out of a self-consistency condition which was shown to be important for the
thermodynamics of quantum crystals, particularly for the elastic constants [8]. Each of
these approximations is equivalent to summing a particular infinite subset of terms in the
perturbation expansion. In the case of self-consistent phonon theory, all the anharmonic
vertices are smeared, i.e. averaged over the atomic positions. By this approach, we clearly
include an infinite number of higher-order derivatives, beyond the fourth, of the interatomic
potential, although certainly not all of them. Our results will, therefore, be expected to lie
between those for a potential truncated at the fourth derivative [9] and those including the
whole potential. All our numerical results will be based on the nearest-neighbour Lennard-
Jones potential to facilitate comparison of our results with parallel work by other researchers,
in particular the exact results, calculated by the method of Gürsey, for the spectral moments
in this model [9].

The spectral shape is of particular interest because it can be obtained experimentally
from the differential scattering cross section for inelastic coherent neutron scattering [10]. In
fact, the maxima of the spectral shape, as a function of frequency, normally give information
on the phonon spectrum of a crystal and the widths of the maxima also give information on
anharmonic effects. The importance of multiphonon processes and interference terms should
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be kept in mind before comparison with experiment becomes possible. The relevant basic
theory has been reviewed by Cowley [11]. The integral equation for the one-phonon Green
function, whose imaginary part, the spectral shape, we wish to calculate in this paper, was
first published by Goldmanet al [8]. Calculations of the spectral shapes of Ne, face-centred
cubic 4He and body-centred3He by Horner [12] have indicated an unexpected additional
peak (or neutron group) for zone boundary phonons with a longitudinal polarization at
frequencies above the usual phonon modes. Leath and Watson [13] have shown, using
the model of a non-linear chain, that additional peaks of this type can be produced by a
resonance in the single cubic anharmonic bubble diagram. This corresponds, in a neutron
scattering experiment, to the process where a neutron scatters inelastically, producing a
virtual phonon that decays into two phonons via cubic interaction.

In this paper, as in the paper by Leath and Watson [13], we also study the effect of the
entire string of repeated bubbles shown in figure 1(c). This class of diagrams corresponds
to the Born series for the mutual scattering of the two phonons via quartic anharmonic
interaction and leads to an enhancement and shift in frequency of the simple two-phonon
production peak. Although their calculations were for a non-linear chain only, Leath and
Watson have speculated that the additional peak might exist in solid He. MacMahan and
Beck [14], on the other hand, have suggested that the subsidiary zone-boundary peaks found
by Horner arise from a computational technique alone. Glyde [15] speculates that subsidiary
peaks have not so far been observed in the experiments because they may be masked by
multiphonon scattering. Further, in a number of other perturbation calculations of three-
dimensional models, cited by Klein and Koehler [16], no subsidiary peaks (except possibly
for longitudinal phonons) were found. Be that as it may, in this paper we are concerned
only with a non-linear chain model, as are the moments calculations with which we compare
our results. It is well known that the existence of subsidiary high-frequency peaks in the
spectral shape, due to two-phonon resonances, are favoured by one-dimensional models and
they were indeed found by Leath and Watson in that case. We have found them also in the
results reported in this paper.

These subsidiary peaks are easily overlooked, and we did not mention them in our earlier
work [7] because we were not concerned with the high-frequency end of the spectral shape.
In this paper we shall show directly how this happened. An important tool in checking on
the reliability of our present results has been a sum rule, similar to the Placzek [17] sum
rule which is satisfied exactly only if the subsidiary peaks in the spectral slope are included.

Subsidiary peaks have not been reported in the related work by Cuccoliet al [6] using
the moments method, but that is not altogether surprising. The low moments contain only
limited information about the spectral function and the method used to cut off the continued-
fraction expansion is predicated on the assumption that the spectral shape is more or less
Lorentzian. A subtle effect such as a subsidiary high-frequencyδ-function-like peak may
not be spotted by that approach. Indeed, a method that treats the potential as a whole may
not involve any of the subsidiary peaks that we find using perturbation theory. The same
comments can be made about the molecular dynamics. The whole emphasis here is on
smoothing out fluctuations (spikes) and the method, as currently applied, is not suited to
spotting a realδ-function peak. It is also the case that the molecular dynamics results in
[6] do not extend to the frequency range where we find a second peak.

In section 2, we review the relevant theory. In section 3, we discuss the potential used
as well as giving some details of our computational procedures. In section 4, we present
and discuss our numerical results and compare them with the results based on the moments
method. In section 5, our conclusion, we summarize the results of our work and present
our views on future prospects.
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2. Theory

The spectral shape of a non-linear chain is defined by

C(k, ω) = 1

N

∑
i,j

exp[ika(i − j)]
∫ ∞

−∞
exp(iωt)〈(ui(t) − uj (0))2〉 dt. (1)

Here N denotes the number of atoms in the chain. The wavenumberk lies in the first
Brillouin zone −π/a < k 6 π/a. The angular brackets denote the quantum average.
ui(t) is the displacement of theith atom from equilibrium at timet . We assume periodic
boundary conditions. Many workers have evaluated expressions similar to equation (1) and
good summaries of their results can be found in some excellent review articles [15, 16].
The expression forC(k, ω) can be written

C(k, ω) = −ih̄

m
coth

(
βh̄ω

2

)
lim

ε→+0

(
1

−(ω + iε)2 + ω2(k) − [2ω(k)/βh̄]G(k, ω + iε)

− 1

−(ω − iε)2 + ω2(k) − 2[ω(k)/βh̄]G(k, ω − iε)

)
(2)

whereG(k, ω) is the proper self-energy. The Hamiltonian of the chain is, to fourth order
in the displacements,

H =
N∑

i=1

p2
i

2m
+

N∑
i=1

(
γ

2
(xi+1 − xi)

2 + δ

6
(xi+1 − xi)

3 + κ

24
(xi+1 − xi)

4

)
(3)

whereγ , δ andκ are the nearest-neighbour force constants. The normal mode frequencies
for a wavenumberk are given by

ω(k) = ωm| sin(ka/2)| ωm = 2
√

γ /m. (4)

We now define widths and shifts:

− 1

βh̄
lim

ε→+0
[G(k, ω ± iε)] = 1(k, ω) ∓ i0(k, ω). (5)

Physically,0(k, ω) represents the broadening of the harmonic delta function peak inC(k, ω)

and 1(k, ω) represents the shift of the maximum from the pointω = ω(k), due to
anharmonic terms in the Hamiltonian. This leads directly to the result (we have dropped an
irrelevant negative sign)

C(k, ω) = 4h̄

m
coth

(
βh̄ω

2

)
ω(k)0(k, ω)

[−ω2 + ω2(k) + 2ω(k)1(k, ω)]2 + [2ω(k)0(k, ω)]2
. (6)

The evaluation of the self-energy including the bubble diagrams of figure 1(c), equivalent
to the results given in [8], gives

G(k) = G(4)(k) + G(3,3)(k)

1 + 1
2[κkT /δ2h̄ω(k)]mω2

mG(3,3)(k)
. (7)

If only the first bubble is included (figure 1(b)), the denominator of the second term is just
1. The expressions forG(4) andG(3,3) can be found in [10]. If we now introduce11, 12

and02, where

− 1

βh̄
G(4) = 11(k) (8)

and

− 1

βh̄
lim

ε→+0
[G(3,3)(k, ω ± iε)] = 12(k, ω) ∓ i02(k, ω) (9)
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we find that

0(k, ω) = 02(k, ω)

[1 − α12(k, ω)]2 + [α02(k, ω)]2
(10)

1(k, ω) = 11(k) + 12(k, ω)[1 − α12(k, ω)] − α02
2(k, ω)

[1 − α12(k, ω)]2 + [α02(k, ω)]2
(11)

where

α = (κ/2δ2)(mω2
m/ω(k)). (12)

The formulae for02(k, ω), 11(k) and12(k, ω) are

02(k, ω) = πh̄

16Nω(k)

N/2∑
k1,k2=−N/2+1

|8(−k, k1, k2)|2
ω1ω2

1(−k + k1 + k2)

×{−(n1 + n2 + 1)δ(ω + ω1 + ω2) + (n1 + n2 + 1)δ(ω − ω1 − ω2)

−(n1 − n2)δ(ω − ω1 + ω2) + (n1 − n2)δ(ω + ω1 − ω2)} (13)

and

11(k) + 12(k, ω) = h̄

8Nω(k)

∑
k1

8(−k, k, k1, −k1)

ω(k1)
[2n1 + 1]

+ h̄

16Nω(k)

∑
k1,k2

|8(−k, k1, k2)|2
ω1ω2

1(−k + k1 + k2)

×
{

n1 + n2 + 1

(ω + ω1 + ω2)p
+ n1 + n2 + 1

(ω − ω1 − ω2)p

− n1 − n2

(ω − ω1 + ω2)p
+ n1 − n2

(ω + ω1 − ω2)p

}
. (14)

The n are the phonon occupation numbers,n = 1/(ēhω/kT − 1).
We evaluate equations (13) and (14) using the expressions

1

(ω)p

= lim
ε→0

(
ω

ω2 + ε2

)
(15)

and

δ(ω) = 1

π
lim
ε→0

(
ε

ω2 + ε2

)
. (16)

We used small but finite values ofε. In particular, the results shown in figures 2–6
were obtained withN = 4000 andε = 0.05. We note that each spectrum exhibits familiar
Lorentzian behaviour with the addition of a high-frequency subsidiary peak, apparently a
δ-function. This is possibly because, although0(k, ω) is zero at high frequencies, there is
one frequency for which the denominator of the spectral function is also zero.

There is an alternative representation that we used for the delta function in our earlier
work [7], namely

δ(ω) = 1

2π

∫ ∞

−∞
exp(iωt) dt. (17)

With this expression, we can evaluate02 analytically. The result is

02(k, ω) = h̄

16

δ2

γ 3
ωmω(k) sinhx

(
(c/

√
C − √

C/c)θ(2ωmc − ω)

coshx − cosh[2x
√

Cs]
+ (C, c ↼↽ → S, s)

)
(18)
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Figure 2. Classical spectral functions C (equation (6)) for thek = π/a mode att = 0.1,
calculated in all four approximations: PT, perturbation theory; SC1, first-order self-consistent
phonon theory; Bubble, perturbation theory including all bubble diagrams, figure 1(c); SC1–
Bubble, first-order self-consistent phonon theory, including all bubble diagrams, figure 1(c).

where

C = 1 − ω2/4ω2
mc2 S = 1 − ω2/4ω2

ms2 (19)

and

c = cos(ka/4) s = sin(ka/4) x = h̄ω/2kT . (20)

The expressions for11(k, ω) and12(k, ω) are

11(k, ω) = 4h̄κω(k)

πm2ω3
m

∫ π/2

0
siny coth

(
βh̄ωm

2
siny

)
dy (21)

and

12(k, ω) = − 1

π
lim
ε→0

( ∫ ∞

−∞

02(k, �) d�

(� − ω)2 + ε2
(� − ω)

)
. (22)

In the high-temperature limit,

11(k, ω) = 4κω(k)

m2ω4
m

kT (23)

12(k, ω) = kT

8

δ2

γ 3
ω(k)

(
θ(ω − 2ωms)√

S
+ θ(ω − 2ωmc)√

C
− 2

)
. (24)
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Figure 3. As for figure 2, but fort = 0.3.

Equations (18)–(24) agree with those obtained by Meier [18] after correcting some misprints
in that work.

In order to incorporate first-order self-consistent phonon theory into our work, we follow
the approach of Klein and Koehler [16]. For a non-linear chain, the self-consistent equations
with nearest-neighbour forces reduce to

D(k) = 1

m

∑
n=±1

[1 − cos(kna)]
∂28(yn)

∂y2
n

(25)

8(yn) = 1√
2πλ(n)

∫ ∞

−∞
exp

(
− x2

2λ(n)

)
V (x + yn) dx (26)

λ(n) = 1

mN

∑
k

[1 − cos(kna)]
h̄

ω(k)
coth

(
βhω(k)

2

)
(27)

yn = na ω2(k) = D(k) ω(k) = ωm

∣∣∣∣sin

(
ka

2

)∣∣∣∣ . (28)

These equations must be solved iteratively.V is the interatomic potential. The next
step in this approach is to smear the third- and fourth-order force constants using

d38(r)

dr3

∣∣∣∣
r=a

= 1√
2πλ

∫ ∞

−∞
exp

(−x2

2λ

)
∂3V (x + r)

∂r3

∣∣∣∣
r=a

dx (29)

and
d48(r)

dr4

∣∣∣∣
r=a

= 1√
2πλ

∫ ∞

−∞
exp

(−x2

2λ

)
∂4V (x + r)

∂r4

∣∣∣∣
r=a

dx. (30)
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Figure 4. Comparison with molecular dynamics results from [9]: (a) perturbation theory
results (——) and molecular dynamics results for full potential (- - - -), at t = 0.1; (b) bubble
diagram results (——) and molecular dynamics results for truncated potential (- - - -), at t = 0.1;
(c) as (a), but att = 0.3; (d) as (b), but att = 0.3. k = π/a.

These are the smearedδ andκ that we use to obtain our self-consistentC(k, ω). A similar
expression is understood forγ .

In order to compare our results with those of the moments method, we shall briefly
review the quantities involved. The even-frequency moments are defined by

µ2n(k) =
∫ ∞

−∞
ω2nC(k, ω) dω. (31)

In the classical case, using methods related to the Placzek [17] sum rule, one finds that

µ2 = 4πkT/m. (32)

Further,

C(k, ω) = µ0(k)

π
Re[ψ0(k, iω)] (33)

whereψ0 is obtained from the Mori continued-fraction representation [6]:

ψn(z) = 1

z + δn+1ψn+1(z)
z = iω. (34)

The coefficientsδn are related to the frequency moments by the equations

δ1 = µ2

µ0
δ2 = µ4

µ2
− µ2

µ0
δ3 =

[
µ6

µ2
−

(
µ4

µ2

)2]/
δ2. (35)
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Figure 5. Spectral functions for thek = π/a mode at t = 0.1, calculated in all four
approximations: ——, quantum-mechanical results forλ = 0.23; - - - -, classical results,λ = 0.

We note that the higherδ depend on differences of comparable terms. The termination
of equation (34), requires great care. A detailed examination of the various procedures
available has been presented by Cowley and Zekaria [19].

3. Interatomic potential and computations

As in earlier work, we use the nearest-neighbour Lennard-Jones potential for our numerical
work in order to make contact with previous results. We write

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(36)

where the nearest-neighbour distancea = 21/6σ . As usual, we express our frequencies in
units of ω̄ =

√
ε/mσ 2, C(k, ω) in units of σ 2/ω̄, and a reduced temperaturet in units of

ε/k. Departures from the law of corresponding states due to quantum effects are expressed
in terms of the de Boer parameterλ =

√
72/21/3 h̄/σ

√
mε. The use of a Lennard-Jones

potential creates two problems. The first has to do with the fact that the Lennard-Jones
potential is not a favourable candidate for perturbation theory. Secondly, there is the
singularity at the origin so that the smeared force constants, equations (26), (29) and (30),
technically do not exist. To deal with this problem, a cut-off procedure was devised [8]. One
looks for a region of stability of the self-consistent solutions of equations (25)–(28) with
respect to a variation in the cut-off of the potential away from the core. Our investigations
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Figure 6. As for figure 5, but fort = 0.3.

into this cut-off problem shows that these short-range effects can be reliably separated from
the physically meaningful range of integration and may be safely neglected, as far as the
self-consistent theory is concerned.

We follow Koehler [20] to carry out a self-consistent calculation with phonon damping.
Our expressions for the real part1(k, ω) and imaginary part0(k, ω) of the phonon self-
energy are formally the same as those listed above in section 2 except that the instantaneous
contribution fromκ, i.e. the first term in equations (7), (11) and (14), is omitted since it
is already included in the self-consistent basis frequencies [21] and the anharmonic force
constantsδ andκ are replaced by their smeared values, equations (29) and (30).

In this paper, as in our previous work on this subject, we examine only the zone-
boundary phonon corresponding tok = π/a. This choice helps us to avoid some of the
singularities inherent in our one-dimensional model. In this respect the inclusion of the
bubble diagrams is very helpful.

We note that the classical result for the sum rule (equation (32)) is quite general,
independent of the approximations used. It provides a useful check on the reliability of our
numerical work. In particular, it revealed a serious inadequacy in our analytical results,
based on equation (17), which are summarized in equations (18)–(24). When the numerical
implementation of that work for the spectral shape is compared with the results based on
equations (15) and (16), there is complete agreement at every frequency except that the
former do not display the high-frequency subsidiary peak. This omission, probably due
to taking a limit too soon, leads to a serious violation of the sum rule, equation (32), as
shown in tables 1 and 2. It is convincing evidence that the subsidiary peaks are real within
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Table 1. The classical (λ = 0) momentsµ2n (equation (31)) and the correspondingδn

(equation (35)) of the nearest-neighbour Lennard-Jones chain for the zone-boundary phonon
k = π/a at a reduced temperaturet = 0.1. The exact results are obtained using the transfer
matrix method of G̈ursey by Cuccoliet al [9] using the full and the truncated (equation (3))
Lennard-Jones potential. Perturbation theory (PT) corresponds to the two diagrams in figures 1(a)
and 1(b) (no smearing). Bubble corresponds to including all bubble diagrams, as in figures 1(a),
1(b) and 1(c) (no smearing). SC1 corresponds to first-order self-consistent theory with the
diagram of figure 1(b) (vertices smeared). SC1–bubble refers to a first-order self-consistent
calculation including the diagrams of figures 1(b) and 1(c) (all vertices smeared). Theµ2n,
including theµ2, were obtained by numerical integration, equation (31).

µ0 µ2 µ4 µ6 δ1 δ2 δ3

Exact (G̈ursey) 0.005 77 1.2566 360.06 126 771 217.7 68.8 272.8
PT 0.005 77 1.2566 361.21 123 874 217.64 69.84 229.12
Bubble 0.005 42 1.2566 361.20 123 864 231.92 55.56 288.01
SC1 0.005 83 1.2566 353.01 122 277 215.43 65.54 281.57
SC1–bubble 0.005 55 1.2566 352.99 122 260 226.50 54.48 338.75

Moments and deltas without the subsidiary peak contribution
PT 0.005 26 1.0071 238.91 63 898.5 191.46 45.8 156.6
Bubble 0.004 99 1.0309 242.96 61 886.6 206.59 29.1 154.2
SC1 0.005 63 1.1411 285.81 83 144.1 202.68 47.8 211.9
SC1–bubble 0.005 34 1.1278 274.09 73 891.3 211.20 31.8 203.0

Moments and deltas for the truncated potential
Exact (G̈ursey) 0.005 15 1.2566 356.6 118 175 244 39.8 339.7

Table 2. Same as table 1, except thatt = 0.3.

µ0 µ2 µ4 µ6 δ1 δ2 δ3

Exact (G̈ursey) 0.017 68 3.7699 1479.1 850 789 213.2 179.1 400.5
PT 0.019 26 3.7693 1527.1 799 074 195.74 209.52 229.12
Bubble 0.013 14 3.7687 1526.5 798 393 286.96 118.30 405.80
SC1 0.020 92 3.7669 1374.2 755 085 180.14 185.22 366.04
SC1–bubble 0.015 82 3.7694 1376.6 757 316 238.31 126.89 532.23

Moments and deltas without the subsidiary peak contribution
PT 0.016 19 1.8928 378.6 95 984 116.91 83.11 128.8
Bubble 0.011 38 2.5294 650.9 179 526 222.27 35.07 135.6
SC1 0.019 99 3.0223 777.1 275 750 151.19 106.13 236.8
SC1–bubble 0.015 15 3.1597 821.8 252 403 208.56 51.53 237.5

Moments and deltas for the truncated potential
Exact (G̈ursey) 0.012 75 3.7699 1376.5 641 658 295.8 69.4 531.8

the limitations of our model. In section 1, we discussed the possible physical origin of
the subsidiary high-frequency peaks in the spectral shape [13]. Whether they will persist
when the perturbation theory techniques are further refined and a more realistic potential is
used is still an open question. When the effect of including the lifetimes of the intermediate
phonons is estimated, there are indications [22] that the subsidiary peaks are greatly reduced.
Be that as it may, our work suggests how careful one has to be in order to settle this matter
definitively.
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4. Results

In an illuminating paper, Cuccoliet al [9] have drawn attention to the striking potential
dependence of the spectral shapes. They illustrated this point by examining the spectral
shapes predicted by the so-called truncated Lennard-Jones potential (equation (3)) and the
full potential (equation (36)) and significantly different they are. Generally speaking, the
truncated potential results are narrower and higher.

In our work, we use the truncated potential for results obtained using perturbation theory
based on figures 1(a) and 1(b), and for the results using bubbles, based on all diagrams shown
in figures 1(a)–1(c). However, the smearing of the force constants in equations (26), (29)
and (30) automatically incorporates all the even-potential derivatives into our first-order
self-consistent results and self-consistent-plus-bubble results. That, of course, does not
include all the contributions of the full potential either, but we would expect our results to
lie between those of the truncated potential and the full potential—and indeed they tend to.
It has been suggested in figure 1 of the paper by Cuccoliet al [9] that these two potentials
are similar only very near to the potential minimum, i.e. perturbation theory is valid for the
calculation of thermal properties of solids only at the very lowest temperatures. However,
we recall that every atom has two nearest neighbours and, when these two contributions
to the potential are added up, the truncated and the full potentials, in which a given atom
moves, are very similar. This is consistent with earlier static thermal results [23]. In any
case, it must be remembered that the atoms move in thedynamic potential of their two
neighbours.

Table 3. Same as table 1, except thatλ = 0.23, t = 0.1 and t = 0.3: quantum-mechanical
calculation of moments and deltas.

µ0 µ2 µ4 µ6 δ1 δ2 δ3

t = 0.1
PT 0.011 842 38 3.424 926 1240.8925 525 243.15 289.43 72.615 305.32
SC1 0.011 938 86 3.378 0627 1235.7451 579 404.46 282.95 82.868 454.93
Bubble 0.011 547 41 3.433 1829 1237.4320 530 856.06 297.31 63.121 391.52
SC1–bubble 0.011 720 15 3.383 8131 1231.2861 586 475.66 288.72 75.158 544.36

t = 0.3
PT 0.020 776 68 5.021 8680 2262.5761 1256 395.7 241.71 208.84 225.99
SC1 0.021 985 52 4.889 8122 2076.9540 1283 971.1 222.41 202.34 406.08
Bubble 0.015 434 26 5.021 3068 2257.6386 1277 957.3 325.34 124.28 421.29
SC1–bubble 0.017 832 87 4.901 9559 2082.4786 1325 883.0 274.88 149.94 600.25

Our results for the moments and deltas are listed in tables 1–3. We consider the reduced
temperaturest = 0.1 andt = 0.3 for the zero de Boer parameter, the classical limit and the
caseλ = 0.23, corresponding roughly to argon, for the same two temperatures.

Our four calculations should not really be regarded as successive approximations. Rather
they are different ways of approaching the problem perturbatively. It is well known in the
field that there is generally much cancellation between many contributions and that often
including more contributions can lead to less accurate results [24]. There is a similar
problem with the moments method. The convergence of the continued-fraction method is
unclear [20]. We do not know whether including more moments and/or fitting to molecular
dynamics results that have been smoothed will surely lead to better results. Since we have
exact results for comparison in the classical case (tables 1 and 2), we can draw some
conclusions concerning our results. At the lower temperaturet = 0.1, our perturbation
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theory results for the moments agree closely with the exact results for the full potential.
The largest discrepancy, as expected, arises forµ6 and is about 2.5%. In spite of this
close agreement, whileδ1 and δ2 agree nicely again,δ3 is off by no less than 16%. This
suggests that, since theδn determine the spectral shape, a much higher accuracy must be
demanded of theµn than has hitherto been customary, to obtain reliable results. We have
used the spectral functions of Cuccoliet al [6, 9] using molecular dynamics as shown in
their diagrams to calculate the corresponding moments and compared them with the exact
results listed in tables 1 and 2 and with each other. We find significant disagreements, in
some cases an order of magnitude larger than those found in this work.

We suspect that the exceptionally good agreement of our perturbation theory results
with those for the exact potential is a coincidence. We are pleased by the fact that our
most sophisticated first-order self-consistent-plus-bubble results agree best with theµn and
δn for the truncated potential. As we have pointed out earlier, they should not, in fact, agree
exactly with the latter but probably should lie in between the moments for the full potential
and the truncated potential. Indeed they do, except for a slight deviation inµ4. Qualitative
arguments should not be pushed too far. We believe that our first-order self-consistent-plus-
bubble results are fairly reliable for the special model involved, at or belowt = 0.1. Even
at a temperature as high ast = 0.3, we find rather similar results, with the perturbation
theory values for the moments agreeing with the exact results for the full potential to much
better than 10%. At this temperature, our results forµn andδn are between the full potential
and the truncated potential results. For this temperaturet = 0.3, we cannot be sure of the
reliability of the results for our special model.

It is crystal clear that the results in tables 1 and 2 which omit the contributions of
the high-frequency subsidiary delta-like peak are not satisfactory, since they fail to match
the exact results. We note that the problem is, as expected, worst forµ6. We also find
that the strength of the subsidiary peak is lowest for the most sophisticated first-order self-
consistent-plus-bubble calculation.

Once the moments are known, the termination question must be faced in the moments
method. It seems agreed in the debate about its validity that firstly the low-order moments
contain only limited information about spectral shapes and secondly additional information
must be used, such as insight into the long-time behaviour of correlations. That inevitably
causes uncertainties. We choose to use their molecular dynamics results as the standard to
compare our results with those of [9] in the classical case. We note, however, that there is
substantial variation in the different molecular dynamics runs shown in [6] and in [9]. In the
quantum case there is no comparable definitive standard. Even for molecular dynamics re-
sults, which are smoothed to remove fluctuations, we have a concern whether they would re-
solve or definitively exclude the high-frequency delta-function-like peak found in our work.

These points having been made, we turn to figure 2 for the classical spectral shape
at t = 0.1 which is actually not such a low temperature for a chain. We find that our
perturbation theory results give an account that is comparable with that of the moments
method of the molecular dynamics results for the zone-boundary phonons. This is true
with respect to the location of the maximum, and the width and structure of the spectral
shape. We were not surprised by this conclusion because of the good agreement of the
corresponding moments. We note that the harmonic frequency occurs atω = 15.12ω̄. The
predictions of the self-consistent theory are equally good. The inclusion of bubble diagrams
does not seem to help. As we shall show, the peak now resembles that found for the
truncated potential. This is a case where more is less! The large difference between our
results and those of molecular dynamics and the moments method is the high-frequency
delta-function-like subsidiary peak which we have found in agreement with the results of



8510 E S Freidkin et al

Leath and Watson [13]. We stress that we think that this difference may well be due to the
way that different workers have treated the potential.

Our results fort = 0.3, shown in figure 3, again display the high-frequency subsidiary
peaks. The perturbation theory results again resemble the full potential molecular dynamics
results although at this high temperature the fit is not quite as good. The maximum frequency
lies about 20% too low in a very broad spectral shape. As self-consistent and bubble diagram
effects are included, the peak of the spectral shape becomes much narrower and approaches
that for the truncated potential using the molecular dynamics method; the height agrees,
but the peak frequency in about 10% too low. This difference corresponds roughly to the
uncertainties in either method. Figure 4 shows a comparison of selected results, at both
temperatures, with the molecular dynamics results of [9].

An advantage of the perturbation theory formalism is that quantum-mechanical effects
are included naturally. It is as simple to perform quantum-mechanical as classical
calculations and there is no reason to think,a priori, that one should be less accurate
than the other. In figures 5 and 6, we show the results for all four versions of perturbation
theory, at both temperatures, with the quantum-mechanical results plotted as solid curves
and the classical results, shown again for comparison, as broken curves. Att = 0.1 there
are substantial differences. For each calculation as well as the moments method results,
the quantum-mechanical calculation leads to a narrower peak, with slight upward shift in
frequency for all except the lowest-order perturbation theory result. In addition the ratio of
the quantum to the classical peak height is about 3 in our work. The corresponding ratio in
the moments method results is over twice as large. Att = 0.3, the difference between the
classical and quantum-mechanical results is, as expected, much less, for all four versions of
the calculation. This contrasts with the results using the moments method where quantum
and classical results are noticeably different. This suggests that the procedure used in [6]
to incorporate quantum effects may lead to an overestimate.

To summarize, in our view, the current perturbation results regarded by us as valid for
the full Lennard-Jones potential overlap meaningfully with those of the moments method
at aboutt = 0.1 and would clearly be reliable below that temperature. In that respect
we are a little more optimistic about the usefulness of perturbation results than Cuccoli
et al [9]. At higher temperatures, e.g.t = 0.3, the perturbation results are certainly
somewhat inadequate but not so much so that an improved (perhaps a fully self-consistent
second-order) calculation could not account for the remaining discrepancies. We think that
pursuing this approach is valuable because quantum effects are included in a more natural
way than is so far possible in the moments method. The valuable insights given by the
truncated potential results of Cuccoliet al will provide a useful guide but one must keep in
mind that, for realistic three-dimensional models, no exact results will be available and the
guidance provided by a one-dimensional model may not be reliable. Some early results for
three-dimensional models have been given in [20, 25]. The question of the high-frequency
subsidiary peaks needs further study.
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